Five dysfunctional telomeres predict onset of senescence in human cells

نویسندگان

  • Zeenia Kaul
  • Anthony J Cesare
  • Lily I Huschtscha
  • Axel A Neumann
  • Roger R Reddel
چکیده

Replicative senescence is accompanied by a telomere-specific DNA damage response (DDR). We found that DDR+ telomeres occur spontaneously in early-passage normal human cells and increase in number with increasing cumulative cell divisions. DDR+ telomeres at replicative senescence retain TRF2 and RAP1 proteins, are not associated with end-to-end fusions and mostly result from strand-independent, postreplicative dysfunction. On the basis of the calculated number of DDR+ telomeres in G1-phase cells just before senescence and after bypassing senescence by inactivation of wild-type p53 function, we conclude that the accrual of five telomeres in G1 that are DDR+ but nonfusogenic is associated with p53-dependent senescence.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dysfunctional telomeres induce p53‐dependent and independent apoptosis to compromise cellular proliferation and inhibit tumor formation

Aging is associated with progressive telomere shortening, resulting in the formation of dysfunctional telomeres that compromise tissue proliferation. However, dysfunctional telomeres can limit tumorigenesis by activating p53-dependent cellular senescence and apoptosis. While activation of both senescence and apoptosis is required for repress tumor formation, it is not clear which pathway is the...

متن کامل

The replicometer is broken: telomeres activate cellular senescence in response to genotoxic stresses

Telomeres, the ends of our linear chromosomes, can function as 'replicometers', capable of counting cell division cycles as they progressively erode with every round of DNA replication. Once they are critically short, telomeres become dysfunctional and consequently activate a proliferative arrest called replicative senescence. For many years, telomeres were thought to be autonomous structures, ...

متن کامل

Senescence of human fibroblasts after psoralen photoactivation is mediated by ATR kinase and persistent DNA damage foci at telomeres.

Cellular senescence is a phenotype that is likely linked with aging. Recent concepts view different forms of senescence as permanently maintained DNA damage responses partially characterized by the presence of senescence-associated DNA damage foci at dysfunctional telomeres. Irradiation of primary human dermal fibroblasts with the photosensitizer 8-methoxypsoralen and ultraviolet A radiation (P...

متن کامل

Telomere dysfunction and genome instability.

The nucleoprotein complexes that cap the very ends of the eukaryotic chromosomes, named telomeres, are indispensable for cell viability. Telomeric DNA shortens in each cell division until it cannot exert end-protective functions in human somatic cells. Additionally, several proteins have been described to play a key role in telomere homeostasis preventing chromosome extremities to be recognized...

متن کامل

p16(INK4a) protects against dysfunctional telomere-induced ATR-dependent DNA damage responses.

Dysfunctional telomeres limit cellular proliferative capacity by activating the p53-p21- and p16(INK4a)-Rb-dependent DNA damage responses (DDRs). The p16(INK4a) tumor suppressor accumulates in aging tissues, is a biomarker for cellular senescence, and limits stem cell function in vivo. While the activation of a p53-dependent DDR by dysfunctional telomeres has been well documented in human cells...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 13  شماره 

صفحات  -

تاریخ انتشار 2011